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Abstract

The synthetic control method is often applied to problems with one or a
few treated units and a small number of control units. Inference procedures
that are justified asymptotically are often unsatisfactory due to (1) small sam-
ple sizes that render large-sample approximation fragile and (2) simplifica-
tion of the estimation procedure that is actually implemented in practice. An
alternative is design-based inference, which is closely related to the placebo
test, a widely used diagnostic tool in practice. It provides valid Type-I error
control in finite samples without artificial simplifications of the method when
the treatment is assigned uniformly among units. Despite the robustness,
it suffers from low resolution since the null distribution is constructed from
only N reference estimates, where N is the sample size. Inspired by a con-
nection to the conformal inference literature, we propose a novel leave-two-
out procedure that bypasses this issue, providing O(N2) reference estimates
while still maintaining the finite-sample Type-I error control under uniform
assignments. Unlike the placebo test whose Type-I error always equals the
theoretical upper bound, our procedure often achieves a lower Type-I error
than theory suggests and a higher power when the effect size is reasonably
large. To account for deviation from uniform assignments, we generalize our
procedure to allow for non-uniform assignments and show how to conduct
sensitivity analysis based on quadratic programming.
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1 Introduction

Synthetic control methods were first introduced by Abadie and Gardeazabal [AG03]
to analyze the effects of terrorism in the Basque Country on the economy of the
region. Since then, the method has developed into a powerful tool in compara-
tive case studies with very few treated units, used widely in practice. The syn-
thetic control framework is typically used in panel data settings with one treated
unit; suppose we observe data with N units, T time periods, where the Ith unit is
treated from time T0, . . . , T .

The synthetic control method models the treated unit by a synthetic control, a
convex combination of the other control units which resembles the treated unit as
closely as possible according to pre-treatment covariates. That is, we seek a vector
of weights W = (w1, . . . ,wI−1,wI+1, . . . ,wN) such that wj ≥ 0 for all j and∑N

j=2wj = 1,
which corresponds to a weighted average of control units. The method chooses
the weights W by minimizing the norm

∥XI −X0W ∥V =
√
(XI −X0W )⊺V (XI −X0W )

where XI are covariates for the treatment unit and X0 is a matrix whose rows
are covariates for the control units. V is a matrix which weights the different
covariates, which may be either pre-specified or learned from the data [ADH11].
Importantly, in many flagship applications of the method, there is one treated
unit and a small number of control units. Moreover, the outcomes are typically
measured over a short time horizon. For example in [AG03], N = 17, T = 40, T0 = 15
and in [ADH10], N = 38, T = 30, T0 = 18.

There are two major approaches to do inference. The first imposes factor-
model type structure on the outcomes, and does asymptotic inference. Many
works in the literature, such as [ADH10, ABD+21, ASS18] impose this assump-
tion to study properties of the synthetic control estimator. The second is a design-
based approach, where the data are seen as fixed, and the treatment is assumed
to be uniformly assigned from 1 to N . The placebo test of [AG03, ADH10] is an
example; it was further extended in [FP18].

There are pros and cons for each approach. Asymptotic inference is difficult
to justify for small N,T,T0, as with many applications of the synthetic control
method. Moreover, simplifications of the procedure are usually made in order to
do asymptotics. This throws out many important practical considerations when
running the method, such as data driven ways of choosing the weight matrix V.
On the other hand, design based frameworks make strong assumptions on the
treatment, although sensitivity analyses can be done to ameliorate this issue. We
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will focus on the design based framework in this paper, but concede that the prob-
lem is difficult and that no solution is perfect.

The standard inference procedure in the design based framework is the placebo
test. It was introduced in [AG03, ADH10] as a diagnostic tool related to permu-
tation inference and Fisher’s randomization test. The procedure was expanded
upon in [FP18] to do inference under the assumption that I is uniformly assigned.
It creates a p-value via the following recipe. For every unit i, create its synthetic
control Ŷi,● using units {1, . . . ,N}∖i. Measure the discrepancy with the actual data
via Ri = ∣Yi,t − Ŷi,t∣. Compare these “placebos” against I using the usual random-
ization p-value

pplacebo =
1

N

N

∑
j=1

1{RI ≤ Rj} .

However, the p-value obtained from such tests are coarse: they take values in
the grid { 1

N , 2
N , . . . , N−1N ,1} . When N is relatively small like in the premier applica-

tions of the synthetic control method [AG03, ADH10, ADH15], the smallest value
1/N of the p-value may give statistical significance, while the 2/N may switch this
conclusion. This granularity hinders the application of the placebo test and re-
lated inference methods in practice. In some applications, the value of 1/N may
be too large to even reject at a pre-specified level α.

1.1 Contributions

We present the Leave-Two-Out (LTO) Jackknife+, an approximate p-value which
is constructed by leaving out two units at a time (excluding the treated unit). We
adopt a design based setup similar to that of the placebo test, assuming that the
treated unit I is uniformly assigned. The LTO Jackknife+ has three advantages
over the placebo inference method.

Firstly, by leaving multiple data points out at a time in the same procedure, one
can create p-values which lie on a much more refined scale than { 1

N , 2
N , . . . , N−1N ,1} .

Secondly, the procedure exhibits desirable empirical properties. In extensive
numerical simulations, we observe that pLTO has higher power when the effect
size is large. It also has desirable Type I error properties as mentioned below.

Thirdly, our method potentially gives useful inference when α < 1/N . In gen-
eral, we cannot create a nonrandomized p-value which has Type I error less than
α. The reason is the following. Supposing that I ∼ Unif{1, . . . ,N}, if p(I) is a p-
value, then PH0(p(I) < 1/N) < 1/N. But PH0(p(I) < 1/N) is equal to k/N for some
integer k ≥ 0; from this we conclude that PH0(p(I) < 1/N) = 0. We should ex-
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pect methods to have zero power in this regime, or have some sort of Type I error
inflation. Accordingly, the LTO p-value, pLTO, satisfies P(pLTO ≤ α) ≤ 1/N . Empir-
ically however, we often observe that Type I error of pLTO is much lower than the
purported bound. This makes the method empirically valid while for alternatives
such as comparable versions of the placebo test, the Type I error is fixed.

Further, we provide an extension to the LTO Jackknife+ for inference in the
α > 1/N setting, where the procedure yields an exact p-value, with no Type I
error inflation. In this setting, the resulting p-value empirically has lower Type I
error than advertised, and has higher power than the usual placebo test for larger
effect sizes. In the above cases, we provide a sensitivity analysis for the procedure.
Finally, our work analyzes extensions of the procedure to leaving k units at a time.

1.2 Example: Application to German Reunification Dataset

In [ADH15], the synthetic control method is applied to understand the effects of
German reunification on the GDP of West Germany, using 16 other OECD coun-
tries as potential controls. The procedure demonstrates a large effect size.

Suppose we were to do inference in this problem with a level constraint α =
0.05; in this case, α < 1/N so that the usual placebo inference will be powerless.
We may do inference in this example using the LTO Jackknife+ p-value of Eq. (1).
The p-value turns out to be 0.0417. On the other hand, the placebo p-value was
computed to be 0.0588.

Because the inference is based on the assumption that each unit is equally
likely to be treated, it is important to assess the sensivity of the inference to as-
sumption. Section 3 provides a Rubin-Rosenbaum style sensitivity analysis pro-
cedure for the LTO statistic which we may conduct on this example. The sensi-
tivity analysis relies on a weighted version of the LTO p-value, which is also an
approximate p-value under non-uniform treatment probabilities πi for unit i. Fix-
ing a Γ, we constrain the non-uniform propensities πi to satisfy πi ∈ [

1
ΓN , Γ

N ] and
calculate the largest possible value of the weighted p-value for propensities in this
constraint. Finally, we search for the smallest value of Γ such that the conclusion
of significance is overturned. See Section 3 for more details.

As the reported LTO p-value is 0.04167, we want to see how large Γ can be
before the conclusion of significance is possibly overturned. The output is shown
in Figure 1. From the figure, Γ is around 1.1 before the maximum possible p-value
is greater than 0.05. Overall, the curve as a function of Γ does not seem to increase
too wildly.
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Figure 1: Output of a sensitivity analysis for the German reunification dataset of
[ADH15]. The plot displays the maximum weighted LTO p-value as a function of
Γ. The red dashed line signifies the level α = 0.05.

2 Leave-Two-Out Jackknife+

2.1 Main Result

The Leave-Two-Out (LTO) Jackknife+ procedure works as follows:

1. For every pair of distinct units (i, j) from 1, . . . ,N and unequal to I , create
the synthetic control with control units 1, . . . ,N excluding points i, j, I to
obtain Ŷ

−(i,j,I)
I , the vector of synthetic control outcomes. For some statistic

S(⋅, ⋅), define the residual

Ri,j,I;k = ∣S(Yk, Ŷ
−(i,j,I)
k )∣,

where k ∈ {i, j, I} and Yk is the observed data for unit k.

For example, the statistic function S(⋅, ⋅) may look at the difference of the
data at a fixed time t, ∣Yk,t − Ŷ

−(i,j,I)
k,t ∣. Another common choice is the pre-

period to post-period ratio of Root Mean Square Prediction Error (RMSPE)
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statistic proposed in [ADH15]:

SRMSPE(X,Y) =
∑

T
t=T0+1(Xt − Yt)

2/(T − T0)

∑
T0
t=1(Xt − Yt)

2/T0

.

2. For every pair of indices in the first step, compute the Leave-Two-Out Resid-
ual

RLTO
i,j,I ∶=max(Ri,j,I;i,Ri,j,I;j).

3. Compute the quantity

pLTO ∶=
1

(N − 1)(N − 2)
∑

i,j∈[N]∖I
i≠j

1{Ri,j,I;I ≤ R
LTO
i,j } , (1)

which is an approximate p-value under the null hypothesis.

Remark 2.1. Thinking of the LTO Jackknife+ p-value in terms of tournaments is useful.
Consider a tournament between all of the N units, where matches are held for every triple
of units. A unit i wins a match amongst units i, j, k if its residual Ri,jk;i is the largest.
Then pLTO after renormalization counts the number of matches that the unit I has won.

By approximate p-value, we mean to say that the LTO p-value satisfies the
following Type I error guarantee:

P(pLTO ≤ α) ≤
3 − 3

N −

√

9(1 − 1
N )

2 − 12 (− 4
3N2 +

1
N + α(1 −

1
N )(1 −

2
N ))

2
. (2)

To gain intuition on this, it is prudent to inspect the Type I error when N is
large. In this setting,

P(pLTO ≤ α) ≲
3 −
√
9 − 12α

2
. (3)

The right hand side is very close to α when α is small. For α = 0.05, the right hand
side is around 0.0508. For α = 0.1, the bound comes out to 0.104. It is interesting
that there is no guarantee for α ≥ 3/4, but this is usually not needed in practice.

Letting f(N,α) denote the right hand side of (2), the Type I error bound may
be improved even further by noticing that P(pLTO ≤ α) is of the form k/N . As a
result, we have the following theorem.
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Figure 2: Solid black line shows f(N,α), with N = 17, as a function of α. The red
line shows the Type I error bounds in Theorem 2.1. The dashed green line is the
y = x line.

Theorem 2.1. Let f(N,α) denote the quantity in Equation (2). Then under the assump-
tion of uniform treatment,

P(pLTO ≤ α) ≤
⌊Nf(N,α)⌋

N
. (4)

Figure 2 plots the functions f(N,α) and its floored version. By inspecting the
figure, it is apparent that the best guarantee upper-bound on P(pLTO ≤ α) for
α < 1/N is 1/N , which makes the Type I error inflation explicit. It is worth making
this bound explicit, especially when we try to do inference in the α < 1/N setting.

Corollary 2.1. When α < 1/N,P(pLTO ≤ α) ≤
1
N .

Proof Sketch. The proof of the coverage guarantee relies on analyzing combi-
natorial structures related to tournaments. We present the proof here in order to
introduce the main ideas of the analysis; it is an interesting extension of the proof
of coverage in the Jackknife+ [BCRT21].
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Throughout this section, let us introduce the notation

I(k ≻ i, j) ∶= 1{Ri,j,k;k >max(Ri,j,k;i,Ri,j,k;j)} .

Call a unit k strange if

∑
i,j∈[N]∖k

i≠j

I(k ≻ i, j) ≥ (1 − α)(N − 1)(N − 2).

Recall the intuition of the p-value as a tournament where matches are held be-
tween every triple of distinct units i, j, k. The winner of the match is the unit with
the largest residual. We call a unit strange if it wins too many matches, quantified
above. In a tournament, not everyone can win too often; following this intuition,
we upper bound the number of strange units.

Let S denote the set of strange units, and let s ∶= ∣S ∣. Summing the definition of
strangeness on both sides, we see that

∑
k∈S
∑

i,j∈[N]
I(k ≻ i, j) ≥ (1 − α)s(N − 1)(N − 2).

We will assume that all sums are over distinct indices, and will omit this notation
from the sum indexing for clarity. For the first term, the left hand side may be split
into three terms:

(I)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
i,j,k∈S

I(k ≻ i, j)+

(II)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2∑
k∈S

∑
i∈S,j∈Sc

I(k ≻ i, j)+

(III)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
k∈S
∑

i,j∈Sc
I(k ≻ i, j) .

For the first sum, note by renaming the labels that∑i,j,k∈S I(k ≻ i, j) = ∑i,j,k∈S I(i ≻
j, k) = ∑i,j,k∈S I(j ≻ k, i). Thus

(I) ≤ ∑
i,j,k∈S

1

3
(I(k ≻ i, j) + I(i ≻ j, k) + I(j ≻ k, i)) ≤ s(s − 1)(s − 2)/3.

Crucially, we use the fact that there can be at most one winner in a triple compar-
ison: I(k ≻ i, j) + I(i ≻ j, k) + I(j ≻ k, i) ≤ 1.1

1We allow for zero winners in the triple comparison if there are ties in the residuals.
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For the second sum, swap the naming of the i, k labels and use the bound
I(k ≻ i, k) + I(i ≻ k, j) ≤ 1 to see that

(II) ≤ 2∑
k∈S

∑
i∈S,j∈Sc

1

2
(I(k ≻ i, k) + I(i ≻ k, j)) ≤ s(s − 1)(N − s).

Finally, in the last sum, we use the naive bound (III) ≤ s(N − s)(N − 1 − s).

Combining these bounds and working through algebra, we arrive at a quadratic
inequality in the variable β ∶= s/N :

β2

3
− β(1 −

1

N
) −

4

3N2
+

1

N
+ α(1 −

1

N
)(1 −

2

N
) ≥ 0.

We can solve this by quadratic formula, yielding

β ≤
3 − 3

N −

√

9(1 − 1
N )

2 − 12 (− 4
3N2 +

1
N + α(1 −

1
N )(1 −

2
N ))

2
. (5)

To conclude, we note that P(pLTO ≤ α) = P(I ∈ S) = β. The bound in equation (5)
shows that pLTO is an approximate p-value. A full proof with further computa-
tional details may be found in the appendix.

Notes on the Type I error guarantee. Looking at the Type I error bound as condi-
tional on the potential outcomes gives another perspective for the LTO guarantee.
Letting Y = {(Yit(1), Yit(0)) ∶ i ∈ [N], t ∈ [T ]} denote the potential outcomes, the
argument in the introduction says the following. Let p(I) be conditionally valid
p-value , i.e. P(p(I) ≤ ∣Y) ≤ α,∀α ∈ (0,1), which is nonrandomized and only de-
pends on the treatment I. Because I is uniform on [N], the conditional probability
P(p(I) ≤ α∣Y) belongs to the set {0/N,1/N, . . . ,N/N}. Thus if α < 1/N,P(p(I) ≤
α∣Y) = 0. Thus when α < 1/N , any conditionally finite-sample valid p-value has
non-zero power.

This does not imply unconditional impossibility. One way to get useful infer-
ence is to reject if the p-value p(I) ≤ 1/N , and hope that P(p(I) ≤ 1/N ∣Y) for some
Y . The placebo test does not have this property however, as the unconditional
Type I error is always ⌊Nα⌋/N . The LTO p-value, on the other hand, seems to
have this property. The unconditional Type I error upper bound is theoretically
1/N in this case, and often much less than 1/N empirically.

Notice we can also create exact p-values in the α < 1/N regime by random-
izing the placebo p-value: whenever the placebo p-value is 1/N , flip a coin to

9



randomize it in order to make the Type I error exactly α. However, we are wary of
the use of external randomization in this form. Although randomization may in-
crease power, it allows the user to cheaply re-run the analysis with the possibility
of obtaining statistical significance. In the worst case, external randomization of
this form may encourage p-hacking for significance. The LTO Jackknife+ p-value,
which is non-randomized, guards against adverse research incentives.

2.2 Constructing confidence intervals

The leave-two-out method may be adapted to yield a confidence interval for the
counterfactual Y(I,t)(0). In this section, we create the residuals RI,i,j;I not by the
RMSPE, but by taking the absolute difference between the synthetic control of unit
I and the actual outcome of unit I at a fixed time t. This is equivalent to finding a
confidence interval for the effect size at a fixed time t. If a strong null is assumed
so that the effect size is fixed over time, a confidence interval can be created using
a simple extension of the procedure in this section.

A direct inversion based confidence interval for the counterfactual is given by

CS(1 − α) = {y ∶ pyLTO ≥ α} ,

where pyLTO is the p-value obtained from the data replacing YI,t(1) by y. From this
definition, the direct inversion confidence interval has a miscoverage guarantee
of ⌊Nf(N,α)⌋

N .

We can also construct the confidence interval indirectly, much like the con-
struction of the original Jackknife+ confidence intervals [BCRT21], via

CS(1 − α) ∶= [q̂−α {Ŷ
i,j,I
I,t −R

LTO
i,j } , q̂

+
α {Ŷ

i,j,I
I,t +R

LTO
i,j }],

where the quantiles are taken over the sets indexed by indices i, j such that i ≠ j
and each not equal to I. Note this is not the same as the direct inversion based
confidence interval for the p-value; in general it will be larger than the inversion
based set, but it still satisfies the following miscoverage guarantee.

Theorem 2.2. The indirect LTO Jackknife+ interval CS(1 − α) satisfies

P(YI,t(0) ∉ CS(1 − α)) ≤ f(N,α).
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Proof. Let us relate the p-value to the coverage guarantees on the leave-two-out
confidence interval. Suppose that YI,t(0) ∉ CS(1 − α). Then either YI,t(0) − Ŷ

i,j,I
I,t ≤

−RLTO
i,j,I for at least [(1 − α)(N−12

)] many pairs of indices (i, j), or YI,t(0) − Ŷ
i,j,I
I,t ≥

RLTO
i,j,I , for at least [(1 − α)(N−12

)] many pairs of indices (i, j). Thus, for at least
[(1 − α)(N−12

)] index pairs,

∣YI,t(0) − Ŷ
i,j,I
I,t ∣ > R

LTO
i,j .

Hence

P(YI,t(0) ∉ CSN(1 − α)) ≤ P
⎛
⎜
⎜
⎝

∑
i,j∈[N]∖I

i>j

1{Ri,j,I;I > R
LTO
i,j } ≥ (1 − α)(

N − 1

2
)

⎞
⎟
⎟
⎠

≤ f(N,α).

by the previous part of the proof.

2.3 Improving power

Notice that in defining the notion of strange unit, we have great flexibility in
choosing the threshold. Call a unit k c-strange if

∑
i,j∈[N]∖k

i≠j

I(k ≻ i, j) ≥ (1 − α)(N − 1)(N − 2) − c(N − 2).

This results in a new p-value

pLTO,c ∶= pLTO −
c

N − 1

Using the same proof technique as before, we can derive a similar quadratic Type
I error guarantee as before, depending now on c.

Theorem 2.3. Let all notation be as above. Then

P(pLTO,c ≤ α) ≤
⌊Nf(N,α, c)⌋

N

where

f(N,α, c) ∶=
3 − 3

N −

√

9(1 − 1
N )

2 − 12 (− 4
3N2 +

1
N + α(1 −

1
N )(1 −

2
N ) +

c(N−2)
N2 )

2
.
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Proof of Thm. 2.3. Define unit k to be c-strange if

∑
i,j∈[N]∖k

i≠j

I(k ≻ i, j) ≥ (1 − α)(N − 1)(N − 2) − c(N − 2).

Let Sc be the set of c-strange units and s = ∣Sc∣. Imitating the proof of Thm. ??, the
number of strange points satisfies the inequality

s2

3
−
4

3
− s(N − 1) +N + α(N − 1)(N − 2) + c(N − 2) ≥ 0

Solving the quadratic inequality in the same fashion, we find that for β = s/N ,

β ≤
3 − 3

N −

√

9(1 − 1
N )

2 − 12 (− 4
3N2 +

1
N + α(1 −

1
N )(1 −

2
N ) +

c(N−2)
N2 )

2
. (6)

Thus, P(pLTO,c ≤ α) = P(I ∈ Sc) ≤ β. Finally, because pLTO,c is a function of a
uniform random variable, the probability P(pLTO,c ≤ α) must be of the form 1/N ;
from this we deduce that P(pLTO,c) ≤

⌊Nf(N,α,c)⌋
N .

The advantage of this procedure is that pLTO,c is strictly more powerful than
pLTO. For a fixed budget α, we can choose c > 0 as large as possible depending on
α such that the type I error guarantee is still the same as for pLTO. That is, pick c
as large as possible such that the equality

⌊Nf(N,α, c)⌋

N
=
⌊Nf(N,α)⌋

N

is retained. For example, when α < 1/N , it can be shown that c may be taken as
large as 1

N−1 −α. The adjustment can be fairly large. For example, when N = 15, α =
0.05, c ≈ 0.02, which may increase power significantly in practice.

Thus whenever we refer to pLTO,c henceforth, the value of c will be chosen as
large as possible depending on α to ensure the same Type I error upper bound
above. We can denote this dependence by writing pLTO,c(α). In Section 4.1 on
power simulations of our method, we implement the optimized p-value. The
power gains are significant, while the empirical Type I error grows slightly. In
practice, we would recommend using this p-value. The only disadvantage is a
lack of a sensitivity analysis procedure for pLTO,c.
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Rejection Sets. One undesirable feature of the powered LTO p-value is that the
procedure is not decision-monotonic in α. That is, if the test based on pLTO,c(α)
rejects at some level α, the test using pLTO,c(α′)may not reject at an α′ with α′ > α.
This is due to the step-like behavior of the Type I error upper bound.

We can enforce decision monotonicity and also improve power of the proce-
dure by considering instead

Iα =max
α′≤α

1{pLTO,c(α
′) ≤ α′} ,

rejecting at level α if Iα = 1. Clearly this procedure is more powerful than rejecting
only when pLTO,c(α) ≤ α. The procedure also controls Type I error. To see this,

P(Iα = 1) = P(∃α′ ∶ pLTO,c(α
′) ≤ α′)

= P(∃α′ ∶ pLTO ≤ α
′ − f(α′)),

where f(α′) is the adjustment c/(N − 1) which is added to the LTO p-value. The
last line may be written

P(pLTO ≤max
α′≤α

α′ − f(α′))

=P(pLTO ≤ g(α) − f(g(α))),

where g(α) = argmaxα′≤αα
′ − f(α′). The latter is equal to P(pLTO,c(g(α)) ≤ g(α)) ≤

⌊Nf(N,g(α))⌋
N ≤

⌊Nf(N,α)⌋
N , which is the same Type I error bound as using just pLTO,c(α).

We do not use this procedure in our simulations, leaving this method for theoret-
ical interest.

2.4 Inference for α ≥ 1/N

By normalizing pLTO differently, we can create a finite-sample valid p-value. This
is useful in standard settings where α ≥ 1/N . In this setting we are interested in
comparing the finite sample valid LTO p-value with the ordinary placebo p-value.
In Section 4, whenever we conduct inference in a setting where α ≥ 1/N , we will
compare the finite sample valid LTO p-value with the usual placebo p-value.

Definition 2.1. Recalling the notation I(k ≻ i, j) ∶= 1{Ri,j,k;k >max(Ri,j,k;i,Ri,j,k;j)},
define the finite-sample valid LTO p-value pLTO,V by

pLTO,V =
1

(N − 1)(N − 1)
∑

j,k≠I,j≠k
I(I ≻ j, k) + 1

N − 1
. (7)
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Proposition 2.1.

P(pLTO,V ≤ α) ≤
3 − 3

N −

√

9(1 − 1
N )

2 − 12[α(1 − 1
N )

2 − 1
3N2 ]

2
.

A quick inspection shows that the right hand side above is smaller than α, for
α in some range [0, c] for some c. In this sense, the p-value is finite sample valid.
We can also define a more powerful version of this p-value in exactly the same
way as in Section 2.3.

2.5 Related Work

The existing literature on synthetic controls is vast: see the survey article [Aba21]
for an introduction. Accordingly, there has been much work addressing inference
for synthetic controls. Among the first inferential-type ideas for synthetic controls
was the placebo test, first described in [AG03], and extended by Firpo and Posse-
bom [FP18] into a permutation type inference procedure. They work in the same
design-based framework where the probability of treatment is uniform. Several
extensions are made, including to a non-equally weighted inference procedure
which is useful for sensitivity analysis.

Other works have also considered the design-based setup and randomization
or permutation based inference. See [BISW21] for a design-based analysis of the
synthetic controls procedure under a similar uniform treatment assumption, and
also a random treatment time assumption. [ST21] gives a related randomiza-
tion inference procedure in a staggered adoption setting where there are multiple
treated units, under the additional assumption that the time at which each unit
adopts treatment follows a Cox proportional hazards model.

Inference procedures have also been developed assuming underlying factor
model structure and related time series assumptions on the data. [CWZ21] de-
velop an inference procedure assuming a regularity condition on the residual pro-
cess in time. The paper contains an extensive discussion on the various choices for
creating the counterfactual or synthetic control. Another line of research [CFT21,
CFPT22] provides prediction intervals via non-asymptotic concentration bounds,
under stationarity and weak dependence time series assumptions on the data. See
also [HS17, AAH+21, ASS18] for related analyses of the synthetic-control type es-
timators.

For many of these results, consistency of the estimator and the resulting infer-
ence procedure is shown in the limit as the number of controls and units goes to
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infinity. Although many of these works offer finite sample bounds, it is difficult to
contextualize these results when the applications of synthetic controls are usually
small N , small T settings. Furthermore, many of these asymptotic results require
simplifications on the synthetic control procedure to carry out analysis. The LTO
Jackknife+ procedure can use other counterfactual models beyond the synthetic
control method, and we require no conceptual simplifications to do inference.
As a result, the LTO procedure may be used with generalizations of the origi-
nal synthetic control procedure such as those outlined in [DI16, CWZ21, AAH+21,
ASS18].

Connection to conformal inference. The LTO proposal extends the ideas of the
Jackknife+ from the conformal inference literature [BCRT21], which creates con-
fidence intervals for predictive inference by leaving out one data point at a time.
Our method can be seen as a leave-two-out version of the Jackknife+, which is
a leave-one-out (LOO) type proposal. The proof strategies are also similar. As
with the original Jackknife+, the LTO Jackknife+ procedure described here can be
generalized beyond synthetic controls and applies to the creation of prediction
intervals.

Theoretically, the LTO method has a few advantages over the Jackknife+. Firstly,
the Type I error bound is much closer to α, namely 3−

√
9−12α
2 , when α is small and N

is large. On the other hand, the primary guarantee of the LOO Jackknife+ method
is a Type I error upper bound of 2α. The LTO method further gives more refined
inference, giving O(N2) comparisons as opposed to O(N) for the LOO procedure.

A detailed comparison to a leave-one-out version of the inference procedure
is left for future work. It would be particularly interesting to empirically analyze
the power of both the LTO and LOO procedures and identify the settings in which
one dominates the other. Inspecting the looseness of Type I error upper bounds
for both procedures is also an important direction.

There are further connections to the conformal inference literature. Construc-
tion of confidence intervals for the placebo p-value, based on inversion, can be
seen as an analog of the full conformal procedure [VGS05]. Aside from full con-
formal, there are related procedures such as split conformal or cross conformal
[Vov15], which may have useful implications for synthetic control inference.
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3 Sensitivity Analysis

Outside of experimental settings, the assumption of uniform treatment is ques-
tionable. It is useful to have procedures to analyze sensitivity of our approach
to this assumption. The goal of these procedures is to answer the question: by
how much would our statistical conclusions change if the treatment were non-
uniform? Phrased another way, by how much would the treatment probabilities
have to change to overturn a conclusion of statistical significance? Firpo and Pos-
sebom [FP18] give an approach to do sensitivity analysis for their p-values under
non-uniform treatments.

To answer this question, we first show that weighted analogs of the leave-two-
out p-values may be derived, assuming that treatment probabilities were non-
uniform. Suppose that the probability of treating unit k is given by πk, k = 1, . . . ,N .
Then the following weighted approximate p-value generalizes the LTO p-value of
Section 2.

Definition 3.1 (Refined weighted p-values, α ≤ 1/N ).

pπ,product ∶= ∑
j≠k
j,k≠I

πjπk

(1 − πI)
2 −∑l≠I π

2
l

I{I /≻ j, k}

In principle, these inexact p-values can be used for sensitivity analysis. The
standard template is as follows:

1. Compute pπ,product for the equal weights benchmark π0 defined by π0,k =

1/N,∀k. Assume the result is significant at some pre-fixed level α0.

2. Fix a Γ ∈ [1,N]. Solve the optimization problem

max
π

pπ,product (8)

subject to πi ∈ [Γ
−1π0,i,Γπ0,i]∀i,∑

i

πi = 1. (9)

3. Do a grid search to find the smallest value of Γ such that the solution to the
above optimization problem is greater than α0.

If the result is insignificant for level α0, we may also assess sensitivity of the
this conclusion by finding the optimizing for the minimum of the above.

For Γ close to one and πi ≈ 1/N , we obtain the same p-value in Section 2, with
similar Type I error guarantees:
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Proposition 3.1. Assume that α ≤ 1/N and πi ∈ [
1

ΓN , Γ
N ] for all i, with Γ < N . Then

P(pπ,product ≤ α) ≤
3

2
−
1

2

¿
Á
ÁÀ9 − 12(α(1 −∑

l

π2
l ) +∑

S
π2
i − 2(1 − α)(

1

NΓ
−

1

N2Γ2
))

For the Type I error bound of pπ,product, we have an approximate bound of
3−
√
9−12α
2 as obtained for the Γ = 1 setting.

Weighted analogs of valid LTO p-values. If inference is conducted using the
α > 1/N p-values, a similar sensitivity analysis procedure may be used, using the
following weighted analogs of the p-values in Section 2.4

Definition 3.2 (Refined weighted p-values, α > 1/N ).

pπ,V,product ∶= ∑
j≠k
j,k≠I

πjπk

(1 − πI)
2
I{I /≻ j, k} +

∑l≠I π
2
l

(1 − πI)
2

pπ,V,sum ∶= ∑
j≠k
j,k≠I

πj + πk

2(N − 1)(1 − πI)
I{I /≻ j, k} +

1

N − 1

When πi = 1/N for all i, the p-values above reduce to those introduced in Sec-
tion 2.4 respectively. The Type I error guarantees are also similar to those above.

Proposition 3.2. We have the following results for the refined α ≥ 1/N p-values, assum-
ing πi ∈ [

1
ΓN , Γ

N ] for all i.

P(pπ,V,product ≤ α) ≤
3

2
−
1

2

¿
Á
ÁÀ9 − 12(∑

i∈S
π2
i −

1

3N2
− (1 − α)(1 −∑

l

π2
l ))

P(pπ,V,sum ≤ α) ≤ α +
√

α2 + (1 − 2α)∑
k∈S

π2
k

Computational Details. The optimization problem in step 2) may pose chal-
lenges. To optimize this problem, we use the following trick. Fixing a Γ, let BΓ
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be the set of π satisfying the constraints in Equation (8). We only need to check if
maxπ∈BΓ

pπ,product is greater than α0. This is equivalent to checking that

max
π∈BΓ

∑
j,k≠I
j≠k

πjπkI{I /≻ j, k} − α0 ((1 − πI)
2 −∑

l≠I
π2
l ) > 0

The optimization problem can be written as a simple quadratic program. Namely,
we must check whether

max
π∈BΓ

π⊺Aπ + 2α0π
⊺eI > α0

where A ∶= (G + α0IN − 2α0eIe
⊺
I), with G ∈ RN×N is a zero-one matrix with entries

Gjk = I{I /≻ j, k} , whenever j and k do not equal I and zero otherwise. Here eI is
the standard basis vector for index I. If the goal is to calculate maxπ∈BΓ

pπ,product,
we can do a binary search over c ∈ [0,1] that satisfy maxπ∈BΓ

pπ,product > c, and ap-
ply the same trick as above.

The objective is not necessarily convex as G is not guaranteed to be positive
semidefinite. As it turns out, the resulting optimization problem is a fundamen-
tal NP hard problem known as quadratic nonconvex programming with box con-
straints. In practice, non-convex quadratic programming problems are solved us-
ing heuristics such as branch-and-bound techniques. As the dimensionality of the
problems that we are solving is rather small, we expect off the shelf solvers should
do well on this problem. Moreover, whenever the computed LTO p-value is small,
the matrix G+IN−2eII is usually rather sparse, which may help with computation.

4 Simulation Results

Thus far we have explored theoretical properties of the LTO Jackknife+ inference
procedure. We compare empirical properties of the LTO Jackknife+ procedure on
semisynthetic examples based on the California Proposition 99 dataset on smok-
ing [ADH10] and the Basque Terrorism dataset on Spanish regional GDP. [AG03].
All simulation results rely on the R package Synth, and may be found on Github.

Firstly, we subsample both datasets in order to mimic an inference setting
where α < 1/N . In this setting, we compare the Type I error and power of the LTO
p-value in Eq. (1) to an inexact variant of the placebo test. The inexact placebo
test simply rejects if the residual RI = ∣YI,t− ŶI,t∣ is the smallest among all the other
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placebos. Secondly, we consider a setting in which α ≥ 1/N , and compare infer-
ence based on the valid LTO p-value in Eq. (7) and the usual placebo p-value. In
both settings, we boost the power of the LTO p-value while keeping the same Type
I error constraint as in Section 2.3.

Empirically, the LTO procedure demonstrates high power in large signal to
noise ratios, compared against the placebo p-value. In the setting where we try to
do inference when α < 1/N , we observe that the empirical Type I error of the LTO
p-value may be zero, whereas the Type I error of the placebo p-value is always
1/N . This suggests that the upper bound on the Type I error establish in Theorem
2.1 is not tight, and in practice, we may use the method while still satisfying Type
I error constraints.

4.1 Semisynthetic Power Simulations

California Proposition 99. In this section, we consider a semisynthetic simu-
lation using the California proposition 99 example of [ADH10], one of the flag-
ship applications of the synthetic control method. The dataset contains data on
cigarette sales, prices, and various other regional attributes in 39 US states, over
the years 1970 to 2000. In [ADH10], the data are used in the synthetic control
procedure to analyze the effect of Proposition 99, a 1988 California state law in-
creasing cigarette taxes, on smoking. In this example, N = 38, T = 30, T0 = 18.

We construct a semisynthetic version of the data, where a subsample of N units
is randomly chosen from the full set of 38 units. California is removed from the
dataset. In the smaller dataset, a state is chosen uniformly at random to be the
‘treated’ unit. For the treated unit I , we posit a uniform treatment effect τ , and we
update the observed outcomes YI,t by adding τ . A range of values of τ are tested,
corresponding roughly to multiples of (0,−0.5,−1,−2,−3) of the standard devia-
tion of the outcome variable (cigarette sales). When τ = 0 we are calculating the
Type I error of the procedures. Similar semisynthetic experiments are provided in
Section A.

In the first setting (α < 1/N), we take α = 0.02 and subsample a dataset of size
N = 30. We run the placebo inference procedure and the leave-two-out JK proce-
dure in order to compare their Type I error and power properties. In the simula-
tions, Type I error and power are calculated exactly by iterating over all units in
the subsampled datasets. Further, we repeat the experiment over 20 Monte Carlo
runs; for each run, a different subsampled dataset is chosen. For the first set of
results, we use the RMSPE statistic when constructing all p-values. We compare
four different procedures. The first is the standard placebo test, which should
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have zero power and Type I error in this setting. The second is an inexact version
of the placebo test, described above. As a result its Type I error is exactly 1/N .
The third and fourth are the LTO procedure for α ≤ 1/N and its powered version
described in Section 2.3. When constructing the synthetic controls, we matched
on several covariates: average retail price of cigarettes, log per capita income, the
proportion of the population age 15–24, and per capita beer consumption. We use
the mean of these variables over the 1980–1988 period, along with lagged smoking
consumption in 1975, 1980, and 1988. This replicates the specification of [ADH10].
The results of this comparison are shown in Figure 3.

Several observations can be made regarding empirical performance. Firstly,
the Type I errors of the LTO p-values are on average smaller than 1/N . This means
that for a majority of the Monte Carlo resamples of the dataset, the empirical Type
I error was zero. Thus, the LTO procedure may be empirically valid even if the
theoretical upper bounds indicate that a Type I error correction is needed. On the
other hand, the Type I error of the inexact placebo is always fixed. Simultane-
ously, the power of the two LTO procedures seems to be better than that of the
inexact placebo test when the effect size is large, with the powered LTO dominat-
ing the standard LTO procedure. When the effect size is intermediate however,
the inexact placebo seems to have the highest power, but not by much.

Figure 4 shows results for the same setup, using instead the absolute difference
of the synthetic control and outcome at the year 2000 to construct the p-values of
interest. The empirical benefits of the LTO p-values are less pronounced in this
setting: the powered LTO procedure has about the same power as the inexact
placebo at all signal to noise ratios except the intermediate case; the power of the
LTO procedure is just slightly worse. The Type I error is only slightly smaller
than 1/N on average, signaling that in most resampled datasets, the LTO proce-
dures achieved the Type I error upper bound of Equation (2). We speculate that
the choice of statistic used in constructing the p-values leads to this difference in
power and Type I error. It would be interesting to establish theoretical results
explaining how the choice of statistic affects the power of the procedure or the
tightness of the Type I error upper bound.

In the second setting where α ≥ 1/N we take α = 0.05,N = 30. In this setting,
we compare the standard placebo test with the LTO p-value described in Section
2.4 and its associated more powerful version. We can largely draw the same con-
clusions as with the α < 1/N setting. Notice that α < 2/N, so the Type I error of
the standard placebo test will also be exactly 1/N. In this setting, the Type I error
upper bound for the LTO procedure is also 1/N . In the simulation, we observe
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Figure 3: Power of several different p-values versus effect size, on size 30 sub-
samples of the California Proposition 99 dataset. Inference is done with α = 0.02,
which falls in the α < 1/N regime. The x-axis is the effect size τ scaled in terms of
multiples of the standard deviation of the outcome variable of the dataset. Error
bars indicate one standard deviation variability of the power over 20 Monte Carlo
samples of the size 30 subsample. Four different methods are compared, all con-
structed using the RMSPE statistic. The rightmost column with τ = 0 is just the
Type I error of the procedures.
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Figure 4: Power of several different p-values versus effect size, on size 30 subsam-
ples of the California Proposition 99 dataset. Inference is done with α = 0.02. The
x-axis is the effect size τ scaled in terms of multiples of the standard deviation of
cigarette sales. Error bars indicate one standard deviation variability of the power
over 20 Monte Carlo samples of the size 30 subsample. Four different methods
are compared, using the absolute difference at the year 2000.
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Figure 5: Power of three different p-values versus effect size, on size 30 subsam-
ples of the California Proposition 99 dataset. Inference is done with α = 0.05, and
so the LTO procedures are constructed with the α > 1/N setting. All procedures
are constructed with the RMSPE statistic. The x-axis is the effect size τ scaled in
terms of multiples of the standard deviation of cigarette sales. Error bars indicate
one standard deviation variability of the power over 20 Monte Carlo samples of
the size 30 subsample.

that the empirical Type I error is far below this theoretical upper bound; in most
Monte Carlo resamples, the Type I error is in fact zero. Moreover, the power of the
powered LTO is on average larger than or equal to that of the standard placebo
test.

The economic impacts of Basque conflict. Next, we consider a similar set up
using a dataset of Spanish regions and GDP studied in [AG03]. In this setting,
we take α = 0.05,N = 15 as an example of inference in the α < 1/N setting, and
compare the placebo, inexact placebo, and two LTO procedures. When construct-
ing all synthetic controls, we imitate the choice of covariates found in the running
Basque data example of [ADH11]. We repeat this comparison over 20 resamples
of the original dataset. The results are found in Figure 6.
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Figure 6: Power of several different p-values versus effect size, on size 15 subsam-
ples of the Spanish GDP dataset. Inference is done with α = 0.05, which falls in the
α < 1/N regime. The x-axis is the effect size τ scaled in terms of multiples of the
standard deviation of the outcome variable of the dataset. Error bars indicate one
standard deviation variability of the power over 20 Monte Carlo samples of the
size 15 subsample. Four different methods are compared, all constructed using
the RMSPE statistic. The rightmost column with τ = 0 is just the Type I error of
the procedures.

Remarkably, the conclusions identified for the Proposition 99 data carry over
to this dataset. As before, the power of the placebo method is zero in all settings.
The LTO procedures demonstrate much lower Type I error than the upper bound
advertises, while at the same time, they exhibit higher power than the inexact
placebo test in higher signal to noise ratios. It is also interesting to note less vari-
ability in the power of the Powered LTO than with the inexact placebo test. When
the effect size is roughly less than one, the placebo test dominates.
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4.2 LTO Sensitivity Analyses

It is worth revisiting the classic case studies of the synthetic control method in
[AG03, ADH10, ADH15] using the LTO and placebo inference procedures. For
each use of the LTO p-value, we analyze the sensitivity of the conclusion to the
equal weights assumption. For all sensitivity analyses, we use Gurobi 10.0 to
solve the nonconvex quadratic optimization problem for optimizing pπ,product. A
similar sensitivity analysis for the placebo test may be done using the results of
[FP18], which we do not replicate here.

In the introduction, we outlined the application of the LTO and placebo in-
ference methods for the German Reunification example of [ADH15], along with
the sensitivity analysis procedure for the LTO method. We can repeat the exer-
cise with the California Proposition 99 dataset on smoking, where we analyze the
impact of Proposition 99 on cigarette sales in California. Here, N = 38 with one
treated unit. We conduct inference with α = 0.05. This is above 1/N , but for the
sake of understanding the sensitivity analysis procedure, we use the α < 1/N LTO
p-value. The LTO p-value obtained was 0.024 while the placebo p-value was 0.026,
which exactly equals 1/N. In this setting, we can also inspect how sensitive the
conclusion of non-significance is with respect to the equal weights assumption. In
this setting, the sensitivity analysis tries to minimize the p-value for each fixed Γ.

For the Spanish region GDP dataset of [AG03], we repeat the exercise to an-
alyze the effect of terrorism on GDP of the Basque country. Here, N = 17 with
the onset of the treatment being T0 = 1970. We conduct inference with α = 0.05,
which is less than 1/N. Surprisingly in this example, we obtained a LTO p-value of
0.67; the placebo p-value gave a similar non-significant result at 0.41. We expected
much smaller p-values given the placebo test results displayed in [AG03, ADH11].
One possible explanation is that in the aforementioned analyses of the Basque
dataset, several regions were removed if they had poor fit for the treatment pe-
riod. We do not incorporate these adjustments in the LTO inference procedure.
Because the LTO p-value is non-significant, in practice a sensitivity analysis pro-
cedure would not be run. It is still interesting to see how the curve of maximum
weighted p-values grows with Γ. Figure 7 shows the output for this example and
the previous one.
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Table 1: The table shows a summary of LTO and Placebo inference procedures
applied to the case studies in [AG03, ADH10, ADH15]. The row entitled ΓLTO

shows the Γ at which the sensitivity analysis for the LTO p-value overturns the
conclusion of pLTO. The value for Basque Country is blank, as the p-value was not
significant at level α.

Proposition 99 Basque Country German Reunification
N 38 17 17
α 0.05 0.05 0.05

pplacebo 0.026 0.41 0.059
pLTO 0.024 0.67 0.042
ΓLTO 1.55 NA 1.42

Figure 7: Left: curve of maximum weighted LTO p-value for the Basque country
in the Spanish GDP dataset of [AG03]. The plot displays the maximum weighted
LTO p-value over weights in BΓ as a function of Γ. The red dashed line signifies
the level α = 0.05. As the unweighted LTO p-value is not significant, in practice
this curve would not be computed. Right: output of a sensitivity analysis for the
Proposition 99 smoking dataset of [ADH11]. The red dashed line signifies the
level α = 0.05. In both analyses, the RMSPE statistic was used in the construction
of the synthetic control.
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5 Discussion

The LTO procedure proposed in this paper was first motivated in an attempt to
obtain more refined p-values, by which we mean it takes more than O(n) val-
ues. Ideally, the p-value used for design-based SC inference or in more general
randomization tests would take on and have minimum value less than 1/N , fol-
lowing for useful inference in the α ≤ 1/N regime where the placebo test has no
power.

The issue of granularity of p-values for certain randomization based tests was
observed a long time ago [Ber00, HG21]. Hemerik and Goeman [HG21] re-raise
this issue in the context of randomized trials, where cohort of n units is randomly
assigned to two treatment groups. Most commonly the randomization is chosen to
enforce balance between the sizes of the two groups. As an alternative, the authors
argue for the use of complete randomization by picking the treatment uniformly
from the set {0,1}n. This leads to p-values on the scale 2−n as opposed to 1

( n
n/2)

, and

consequently leads to greater power when the level α is very small. Situations
where α is very small arise in multiple testing correction, which is increasingly
applied in practice.

The impossibility result mentioned in the Introduction shows that it is not pos-
sible to obtain a useful p-value without a Type I error correction, but there are
other useful potential ways to construct more refined p-values. For example, ran-
domizing p-values can also solve this problem: whenever the p-value is 1/N , flip
a coin to randomize it. This allows for the p-value to be 1/2N . As mentioned
previously, we caution against the use of external randomization of this form. Al-
though randomization may increase power, it allows the user to cheaply re-run
the analysis with the possibility of obtaining statistical significance.

One could also combine several p-values obtained from randomization tests
with slightly different statistics. In this example, instead of using the usual SC
estimator we may use related techniques such as those proposed in [BISW21,
DI16, CWZ21], to obtain p-values p1, . . . , pm for the null hypothesis, which are
coarse in the sense that they take values in {1/N,2/N, . . .} . Then a more refined
p-value might be obtained by considering 2(∑i pi)/m. This is a folklore result dis-
covered and re-discovered by several authors, including Ruschendorf and Meng
[Rüs82, Men94].

Extensions of the folklore result are systematically studied in the p-merging
literature, where generalized averages of p-values, functionals of order statistics,
and other proposals are shown to be p-values under arbitrary dependence. For
further details, see [VW20, VWW22] and the references therein. Ideas from the p-
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merging literature may let us combine both the LTO procedure and placebo pro-
cedure in fruitful ways. The power simulations of Section 4.1 suggest that the
placebo p-value is more powerful in low signal to noise ratio regimes, while the
LTO procedure has higher power in higher SNR regimes. It would be interesting
to see if p-merging techniques such as [LX20] could combine LTO and placebo p-
values to create ones with uniformly higher power and the empirical Type I error
properties of the LTO procedure.

5.1 Extensions of the Leave-Two-Out procedure

We discuss several extensions of the Leave-two-out procedure. The first defines
the notion of strange point in a different way, while the second notion leaves r
points out at a time.

5.1.1 Rank Leave-Two-Out Jackknife+

Instead of labeling a unit as strange if it wins too many matches, we can consider
a unit to be strange if its rank across all matches is too large. This leads to a variant
of the procedure which has similar coverage guarantees as the original Jackknife+
procedure; see Theorem 1 of [BCRT21]. Computing the confidence set from this
p-value in general requires inversion. Define rank{I; I, i, j} ∶= I{I ≻ j} + I{I ≻ i} ,
where in this context, {I ≻ j} ∶= {RI,i,j;I > RI,i,j;j} and similarly for {I ≻ i}. We can
define a p-value

pLTO,rank ∶=
1

(N − 1)(N − 2)
∑

j,k∈[N]∖I
j≠k

(2 − rank{I; I, i, j}),

Similarly to pLTO, there is a variant of pLTO,rank which is a finite-sample valid p-
value but has no power below O(1/N), but we will not discuss this extension.
This valid p-value may be created by normalizing by 1/N2 in the definition of
pLTO,rank above.

We may also define the related confidence set. For any given y ∈ R, define
Ry

I,j,k;I = ∣y − Ŷ
−{I,j,k}
I,t ∣ for any j, k. Using these residual quantities, we may define

the analogous quantity ranky {I; I, i, j} as above. Then the confidence set is given
by

CSLTO,rank(1 − α) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

y ∶ ∑
i,j∈[N]∖I

i≠j

1

2
ranky {I; I, i, j} ≤ (1 −

α

2
)(N − 1)(N − 2)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭
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Notice that this is the same set as {y ∶ pyLTO,rank ≥ α} , where pyLTO,rank is the LTO
p-value constructed with YI,t = y.

Theorem 5.1 (LTO Rank-Sum Jackknife+). pLTO,Σ is an approximate p-value:

P(pLTO,Σ ≤ α) ≤ α +
1 − α

N
.

As an immediate corollary,

P(YI,t(0) ∉ CSLTO,rank) ≤ α +
1 − α

N
.

A natural question to ask is which LTO procedure is more conservative. The
next result provided shows that the p-values for the Rank Sum LTO procedure
and Rank Threshold LTO procedure are sandwiched between one another, for
different coverage levels.

Proposition 5.1 (Interleaving of Jackknife+ Confidence Intervals).

CSLTO,Rank(1 − α) ⊆ CSLTO(1 − α) ⊆ CSLTO,Rank(1 −
α

2
)

Proof. Firstly, notice that I{I ≻ j}+I{I ≻ i} ≤ 2I{I ≻ i, j}. This immediately implies

∑
i,j∈[N]∖I

i≠j

1

2
rank{I; I, i, j} ≤ ∑

i,j∈[N]∖I
i≠j

1{Ri,j,I;I ≥ R
LTO
i,j } ,

and so CSLTO(1 − α) ⊇ CSLTO,Rank(1 − α). On the other hand, suppose that for
exactly γ(N − 1)(N − 2) pairs of indices, the treated unit I wins the comparison
against the pair:

∑
i,j

I{I ≻ i, j} = γ(N − 1)(N − 2).

Then ∑i,j
1
21{rank{I; I, i, j} = 1} ≤

(1−γ)
2 (N − 1)(N − 2). Adding these inequalities,

we find that
∑
i,j

1

2
rank{I; I, i, j} ≤ (

1

2
+
γ

2
)(N − 1)(N − 2).

Thus if∑i,j I{I ≻ i, j} ≤ (1−α)(N−1)(N−2), then∑i,j
1
2 rank{I; I, i, j} ≤ (1−

α
2 )(N−

1)(N − 2).
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5.1.2 Leave-r-out Jackknife+

We may consider an analogous procedure for Jackknife+ where r-tuples of data
points are left out. The analysis of the method in this setting clarifies the essential
features of the LTO case. Leaving out r ≥ 2 points at a time allows for p-values
with even smaller minimum values, which may be a boon over the leave-two-out
method in some situations. For clarity, the results for LRO case will be phrased in
terms of confidence sets.

Define the residual

R(i1,...,ir);i = ∣Yi,t − µ̂−(i1,...,ir)(Yi,●)∣

Define rank{i0; i1, . . . , ir} = ∑
r
t=1 1{R(i1,...,ir);i0 > R(i1,...,ir);it}. Then, we can create

the confidence sets

CSWin(α) =

⎧⎪⎪
⎨
⎪⎪⎩

YI,t ∶ ∑
{i1,...,ir}

I{I ≻ i1, . . . , ir} ≤
1

⌊αN⌋
[(

N

r + 1
) − (

N − ⌊αN⌋

r + 1
)]

⎫⎪⎪
⎬
⎪⎪⎭

CSRank(α) =

⎧⎪⎪
⎨
⎪⎪⎩

YI,t ∶ ∑
{i1,...,ir}

1

r
rank{I; i1, . . . , ir} ≤ (1 − α)(

N

r
)

⎫⎪⎪
⎬
⎪⎪⎭

.

Creating these confidence sets for both of these procedures requires grid search
in general. Practically, however, running this method is computationally intensive
for synthetic controls. In math, the two quantities above satisfy the following
guarantees:

Theorem 5.2 (Leave-r-out Jackknife+ guarantees).

P(YI,t(0) ∉ CSWin(α)) ≤ 2α +
1 − 2α

N
P (YI,t(0) ∉ CSRank(α)) ≤ α

Heuristically the threshold Q ∶= 1
⌊αN⌋ [(

N
r+1) − (

N−⌊αN⌋
r+1 )] can be given a nice inter-

pretation. For large N and small α, Q is approximately equal to 1
Nα [

Nr+1
(r+1)! −

((1−α)N)r+1
(r+1)! ],

which is equal to
1 − (1 − α)r+1

α

N r

(r + 1)!
. (10)

When α is small, (1 − α)r+1 ≈ 1 − (r + 1)α + (r+12 )α
2. Using this approximation,

equation (10) simplifies to (1 − r
2α)

Nr

r! , which is effectively

(1 −
r

2
α)(

N

r
). (11)
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Under this heuristic, an approximation of the confidence sets for the value of the
counterfactual YI,t(0) can be written as

ĈSWin(α) =

⎧⎪⎪
⎨
⎪⎪⎩

yI,t ∶ ∑
{i1,...,ir}

I{I ≻ i1, . . . , ir} ≤ (1 − α)(
N

r
)

⎫⎪⎪
⎬
⎪⎪⎭

ĈSRank(α) =

⎧⎪⎪
⎨
⎪⎪⎩

yI,t ∶ ∑
{i1,...,ir}

1

r
rank{I; i1, . . . , ir} ≤ (1 − α)(

N

r
)

⎫⎪⎪
⎬
⎪⎪⎭

.

By the results of Theorem 5.2, the miscoverage rate of ĈSWin(α) should be roughly
2
rα, while the miscoverage of ĈSRank(α) should be about 2α. This can likely be
made precise in the asymptotic limit as α → 0, n→∞.

There is an interleaving between the approximate confidence sets of these pro-
cedures. Firstly, notice that∑{i1,...,ir} I{I ≻ i1, . . . , ir} ≤ ∑{i1,...,ir}

1
r rank{I; i1, . . . , ir} .

This immediately implies that ĈSRank(α) ⊆ ĈSWin(α). Further, suppose that

∑
{i1,...,ir}

I{I ≻ i1, . . . , ir} = γ(
N

r
),

for some γ ∈ [0,1]. Then

r−1
∑
k=0

∑
{i1,...,ir}

k

r
1{rank{I; i1, . . . , ir} = k} ≤

r − 1

r
(1 − γ)(

N

r
).

Adding these two bounds, we find ∑{i1,...,ir}
1
r rank{I; i1, . . . , ir} ≤ (

r−1
r +

1
rγ) (

N
r
).

These two bounds show that if γ ≤ (1 − r
2α) then ∑{i1,...,ir}

1
r rank{I; i1, . . . , ir} ≤

(1 − α
2 ). This proves the inclusion ĈSWin(

r
2α) ⊆ ĈSRank(1 −

α
2 ). The miscoverages of

these two intervals are both theoretically bounded by α according to Theorem 5.2.
This suggests that the confidence set produced by the Leave-r-out rank-jackknife+
is shorter than that of the LRO max-jackknife+, for the same coverage level.

5.2 Alternative Sensitivity Analysis Procedures

Definition 5.1.

pπ,sum ∶= ∑
j≠k
j,k≠I

πj + πk

2(N − 2)(1 − πI)
I{I /≻ j, k}
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Proposition 5.2. We have the following results for the refined α ≤ 1/N p-values, assum-
ing πi ∈ [

1
ΓN , Γ

N ] for all i. Let β = αN−2
N−1 +

1
N−2 . Then

P(pπ,sum ≤ α) ≤ β +

¿
Á
ÁÀβ2 + [(1 − 2α)

N − 1

N − 2
−

1

N − 1
]∑
k∈S

π2
k.

From the formula of the Type I error of pπ,sum, when Γ ≈ 1 and N is large, the
Type I error when is approximately 2α.

Weighted analogs of valid LTO p-values. If inference is conducted using the
α > 1/N p-values, a similar sensitivity analysis procedure may be used, using the
following weighted analogs of the p-values in Section 2.4

Definition 5.2.

pπ,V,sum ∶= ∑
j≠k
j,k≠I

πj + πk

2(N − 1)(1 − πI)
I{I /≻ j, k} +

1

N − 1

When πi = 1/N for all i, the p-value reduces to those introduced in Section 2.4
respectively. The Type I error guarantees are also similar to those above.

Proposition 5.3. We have the following results for the refined α ≥ 1/N p-value, assuming
πi ∈ [

1
ΓN , Γ

N ] for all i.

P(pπ,V,sum ≤ α) ≤ α +
√

α2 + (1 − 2α)∑
k∈S

π2
k

Computational Details. The optimization procedure for pπ,sum is comparatively
more straightforward than that of pπ,product. Using the same approach, for any
fixed Γ we need only check whether maxπ∈BΓ

pπ,sum ≥ α0. Because 2(N −2)(1−πI) >

0, it suffices to check whether

max
π∈BΓ

∑
j≠k,j,k≠I

(πj + πk)Gjk − 2α0(N − 2)(1 − πI) > 0.

The resulting optimization problem is a linear program. We may rewrite the prob-
lem as verifying whether

max
π∈BΓ

w⊺π > 2α0(N − 2),
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for the vector w ∶= diag((G+G⊺)E)+2α0(N −2)eI , where G is the matrix described
above and E is another zero one matrix, such that Ejk = 0 whenever j = k or j = I.
This is computationally tractable. In numerical simulations of this method, we
used the R package lpSolve [B+15] to solve the linear programming problem for
pπ,sum.

For pπ,V,sum, the same approach works. We only need to check if maxπ∈BΓ
pπ,V,sum

is greater than α0, which reduces to checking that

max
π∈BΓ

∑
j≠k,j,k≠I

(πj + πk)Gjk + 2(1 − πI) > 2α0(N − 1)(1 − πI).

This is equivalent to verifying whether the maximal objective of the linear pro-
gram maxπ∈BΓ

w̃⊺π with w̃ ∶= diag((G +G⊺)E) + (2α0(N − 1) − 2)eI is greater than
2α0(N − 1) − 2.
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A Additional Simulation Results

In addition to the results provided in Section 4.1, we provide a few more results for
completeness on the Proposition 99 dataset. The first additional result is a power
comparison between the standard placebo, LTO, and the powered LTO p-value
in the α > 1/N regime, when evaluating the synthetic controls using the absolute
difference at year 2000. Figure 8 displays these results. The advantages of the
LTO procedure are not as prnounced here. The powered LTO has slightly lower
average Type I error and comparable or slightly greater power than the placebo.
This setting reinforces the observation that construction of the synthetic control
using the RMSPE statistic highlights the benefits of the LTO procedure.

Next, it is interesting to consider how these conclusions may change when the
synthetic controls are evaluated at a year other than year 2000. Figures 9 and 10
show the Type I error and power for large effect size when evaluating the synthetic
controls at different years in the range 1996 - 2000. We draw the same conclusions
on the same benefits of the LTO procedure as before, but dependent on the year,
the empirical Type I error is larger than for other years.

In addition, some results are provided in Figures 11, 12 for the Basque country
dataset of [AG03]. It is interesting to note that when constructing the placebo test
and LTO statistic using the difference at a fixed year, the Type I errors are almost
comparable for several years. See the left panel of Figure 12.

B Proofs

B.1 Proofs for Section 2

Full Proof of Thm. 2.1. Let us start with the decomposition of the sum outlined in
Section 2:

(I)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
i,j,k∈S

I(k ≻ i, j)+

(II)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2∑
k∈S

∑
i∈S,j∈Sc

I(k ≻ i, j)+

(III)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
k∈S
∑

i,j∈Sc
I(k ≻ i, j) .

For the first sum, note by renaming the labels that∑i,j,k∈S I(k ≻ i, j) = ∑i,j,k∈S I(i ≻
j, k) = ∑i,j,k∈S I(j ≻ k, i). Thus

(I) ≤ ∑
i,j,k∈S

1

3
(I(k ≻ i, j) + I(i ≻ j, k) + I(j ≻ k, i)) ≤ s(s − 1)(s − 2)/3.
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Figure 8: Power of several different p-values versus effect size, on size 30 sub-
samples of the California Proposition 99 dataset. The rightmost column indicates
Type I error of each method. Inference is done with α = 0.05. The x-axis is the ef-
fect size τ scaled in terms of multiples of the standard deviation of cigarette sales.
Error bars indicate one standard deviation variability of the power over 20 Monte
Carlo samples of the size 30 subsample. Three different methods are compared,
using the absolute difference at the year 2000. As α > 1/N in this setting, the LTO
procedure is constructed to be finite sample valid.
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Figure 9: Power of several different p-values, grouped by year. Left figure de-
notes Type I error; right figure displays power with respect to roughly 2 standard
deviations of the outcome variable. The x-axis signifies the year with which the
synthetic controls were compared on. The rightmost column indicates Type I error
of each method. Inference is done with α = 0.05. Error bars indicate one standard
deviation variability of the power over 20 Monte Carlo samples of size 30 sub-
sample of the original dataset. Three different methods are compared, using the
absolute difference at the year indicated on the x-axis.
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Figure 10: Power of several different p-values, grouped by year. Left figure de-
notes Type I error; right figure displays power with respect to roughly 2 standard
deviations of the outcome variable. The x-axis signifies the year with which the
synthetic controls were compared on. The rightmost column indicates Type I er-
ror of each method. Inference is done with α = 0.05. Error bars indicate one
standard deviation variability of the power over 20 Monte Carlo samples of size
30 subsample of the original Prop. 99 smoking dataset. Three different methods
are compared, using the absolute difference at the year indicated on the x-axis. As
α > 1/N in this setting, the LTO procedure is constructed to be finite sample valid.
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Figure 11: Power of several different p-values versus effect size, on size 15 sub-
samples of the Basque country dataset. The rightmost column indicates Type I
error of each method. Inference is done with α = 0.05. The x-axis is the effect size
τ scaled in terms of multiples of the standard deviation of cigarette sales. Error
bars indicate one standard deviation variability of the power over 20 Monte Carlo
samples of the size 15 subsample. Three different methods are compared, using
the RMSPE statistic. As α > 1/N in this setting, the LTO procedure is constructed
to be finite sample valid.
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Figure 12: Power of several different p-values, grouped by year. Left figure de-
notes Type I error; right figure displays power with respect to roughly 2 standard
deviations of the outcome variable. The x-axis signifies the year with which the
synthetic controls were compared on. The rightmost column indicates Type I error
of each method. Inference is done with α = 0.1. Error bars indicate one standard
deviation variability of the power over 20 Monte Carlo samples of size 15 subsam-
ple of the original Basque country dataset. Three different methods are compared,
using the absolute difference at the year indicated on the x-axis. As α > 1/N in this
setting, the LTO procedure is constructed to be finite sample valid.

42



For the second sum, swap the naming of the i, k labels and use the bound I(k ≻
i, k) + I(i ≻ k, j) ≤ 1 to see that

(II) ≤ 2∑
k∈S

∑
i∈S,j∈Sc

1

2
(I(k ≻ i, k) + I(i ≻ k, j)) ≤ s(s − 1)(N − s).

Finally, in the last sum, we use the naive bound (III) ≤ s(N − s)(N − 1 − s).

Combining these bounds, canceling a factor of s, we find that

(1 − α)(N − 1)(N − 2) ≤ (s − 1)(s − 2)/3 + (s − 1)(N − s) + (N − s)(N − 1 − s).

The right hand side reduces to

1

3
s2 − s +

2

3
+ sN −N − s2 + s + (N2 −N −Ns − sN + s + s2)

=
1

3
s2 +

2

3
− s(N − 1) − 2N +N2.

Thus

1

3
s2 +

2

3
− s(N − 1) − 2N +N2 − (N2 − 3N + 2) + α(N − 1)(N − 2) ≥ 0,

which reduces to

s2

3
−
4

3
− s(N − 1) +N + α(N − 1)(N − 2) ≥ 0

Introducing β = s/N , we may reduce to the quadratic inequality

β2

3
− β(1 −

1

N
) −

4

3N2
+

1

N
+ α(1 −

1

N
)(1 −

2

N
) ≥ 0.

We can solve this by quadratic formula. The right endpoint is greater than 1, so
we conclude that

β ≤
3 − 3

N −

√

9(1 − 1
N )

2 − 12 (− 4
3N2 +

1
N + α(1 −

1
N )(1 −

2
N ))

2
. (12)

To conclude, we note that P(pLTO ≤ α) = P(I ∈ S) = β. The bound in equation (5)
shows that pLTO is an approximate p-value.
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Proof of Corollary 2.1. We will show that f(N, 1
N−1) <

2
N . Noting that f(N,α) is

continuous and increasing in α, this shows that f(N,α) < 2
N ,∀α < 1/N . As a con-

sequence of Theorem 2.1, it follows that P(pLTO ≤ α) ≤
1
N for all α < 1/N.

Checking the inequality f(N, 1
N−1) <

2
N reduces to verifying

3 −
3

N
−

√

9(1 −
1

N
)2 − 12(−

4

3N2
+

1

N
+

1

N
(1 −

1

N
)(1 −

2

N
)) <

4

N
,

which is equivalent to

(3 −
3

N
−

4

N
)2 < 9(1 −

1

N
)2 − 12(−

4

3N2
+

1

N
+

1

N
(1 −

1

N
)(1 −

2

N
)) .

Expanding and cancelling the 9(1 − 1
N )

2 terms, this is equivalent to

−
24

N
(1 −

1

N
) +

16

N2
< −

12

N
+

16

N2
−
12

N
(1 −

1

N
)(1 −

2

N
),

which is satisfied as long as N > 2.

Proof of 2.1. For this proof, call a unit k strange if

∑
i,j∈[N]∖k

i≠j

I(k ≻ i, j) ≥ (1 − α)(N − 1)(N − 1).

Let S denote the set of strange units, and let s ∶= ∣S ∣. Summing the definition of
strangeness on both sides, we see that

∑
k∈S
∑

i,j∈[N]
I(k ≻ i, j) ≥ (1 − α)s(N − 1)(N − 1).

Using the same decomposition as in the proof of 2.1, we find that

s(s − 1)(s − 2)

3
+ s(s − 1)(N − s) + s(N − s)(N − 1 − s) ≥ (1 − α)s(N − 1)2,

introducing β = s/N, this reduces to the quadratic inequality

β2

3
− β(N − 1) −

1

3N2
+ α(1 −

1

N
)2

Solving this yields

β ≤
3 − 3

N −

√

9(1 − 1
N )

2 − 12[α(1 − 1
N )

2 − 1
3N2 ]

2
.

Finally, note that unit I is strange if and only if pLTO,V ≤ α.
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B.2 Proofs for Section 3

Proof of Proposition 3.1. We first analyze the refined weighted p-value. Because
∑ j≠k

j,k≠I
πjπk = (1 − πI)

2 − ∑l≠I π
2
l , the event that the p-value is less than α is equal

to the event that

∑
i,j≠I
j≠i

πiπj

(1 − πI)
2 −∑l≠I π

2
l

I{I ≻ i, j} ≥ (1 − α)

Define a unit k to be strange if it satisfies the above bound in place of I. Call S
the set of strange points and s = ∣S ∣. Then multiply on both sides by πk((1 − πk)

2 −

∑l≠k π
2
l ) and sum over k ∈ S to obtain the inequality

∑
k∈S
∑
i,j

πiπjπkI{I ≻ j, k} ≥ (1 − α)
⎛

⎝
∑
k∈S

πk(1 − πk)
2 − ∑

k∈S,l≠k
πkπ

2
l

⎞

⎠
(13)

the left hand side of the above may be split into three terms. The sums are over
distinct indices.

(I)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
i,j,k∈S

πkπiπjI(k ≻ i, j)+

(II)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2∑
k∈S

∑
i∈S,j∈Sc

πkπiπjI(k ≻ i, j)+

(III)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
k∈S
∑

i,j∈Sc
πkπiπjI(k ≻ i, j) .

For sum (I), split the sum into three copies of itself, and permute the labels cycli-
cally. That is, by switching the indexing labels, we note ∑i,j,k∈S πkπiπjI(k ≻ i, j) =
∑i,j,k∈S πkπiπjI(i ≻ j, k) = ∑i,j,k∈S πkπiπjI(j ≻ k, i). Next, because at most one of the
residuals Ri,j,k;⋅ can be the largest, I(i ≻ j, k) + I(j ≻ k, i) + I(k ≻ i, j) ≤ 1. This leads
to the bound

(I) ≤
1

3
∑

i,j,k∈S
πiπjπk =

1

3
[p3∗ − 3∑

i,j

π2
i πj + 2∑

i

π3
i ].

For the second sum (II), switching the labels of i, k gives the identity

∑
k∈S

∑
i∈S,j∈Sc

πkπiπjI(k ≻ i, j) =∑
i∈S

∑
k∈S,j∈Sc

πkπiπjI(i ≻ k, j).

Bounding the indicator sum I(k ≻ i, j) + I(i ≻ k, j) by one, we have the bound

(II) ≤∑
i∈S

∑
k∈S,j∈Sc

πkπiπj = [p
2
∗ −∑

i∈S
π2
i ](1 − p∗).
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Lastly, we bound (III) by the naive bound; replacing the indicator by the constant
1, the sum can be bounded by p∗[(1 − p∗)2 −∑i∈Sc π

2
i ].

Summing these bounds, we find

1

3
p3∗ − p

2
∗ + p∗(1 − ∑

i∈Sc
π2
i ) +

2

3
∑
i∈S

π3 ≥ (1 − α)
⎛

⎝
∑
k∈S

πk(1 − πk)
2 − ∑

k∈S,l≠k
πkπ

2
l

⎞

⎠

= (1 − α)(p∗ − 2∑
k∈S

π2
k + 2∑

k∈S
π3
k − p∗

n

∑
l=1

π2
l ) .

After some simplification, the resulting bound gives

1

3
p3∗ − p

2
∗ + p∗ (∑

i∈S
π2
i + α(1 −∑

l

π2
l )) ≥ 2(1 − α)[∑

k∈S
π2
k − π

3
k]

Using the fact that πk − π2
k is minimized at πk =

1
NΓ under the constraint that πk ∈

[ 1
NΓ ,

Γ
N ], so long as Γ << N. we may lower bound the right hand side by 2(1 −

α)p∗(
1

NΓ −
1

N2Γ2 ). Now we may cancel a factor of p∗, which yields the quadratic
inequality

1

3
p2∗ − p∗ + [∑

S
π2
i + α(1 −∑

l

π2
l ) − 2(1 − α)(

1

NΓ
−

1

N2Γ2
)] ≥ 0.

This may be solved to yield the following quadratic inequality:

p∗ ≤
3

2
−
1

2

¿
Á
ÁÀ9 − 12(α(1 −∑

l

π2
l ) +∑

S
π2
i − 2(1 − α)(

1

NΓ
−

1

N2Γ2
))

Proof of Proposition 3.2. To analyze this expression, first notice that {pπ,LTO ≤ α} is
equivalent to the event

∑
j,k≠I
j≠k

πjπk

1 −∑l π
2
l

I{I ≻ j, k} ≥ (1 − α).

Let unit k be a strange point if it satisfies the inequality

∑
i,j≠k
j≠i

πiπj

1 −∑l π
2
l

I{k ≻ i, j} ≥ (1 − α).
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Let p∗ = ∑i∈S πi, which is the probability that I is a strange point. Let S be the set
of strange points. Upon multiplying by (1 −∑l π

2
l )πk on both sides and summing

over k ∈ S , we have

∑
k∈S
∑
i,j

πiπjπkI{I ≻ j, k} ≥ (1 − α)p∗(1 −∑
l

π2
l ).

Imitate the bound on the left hand side made in the proof of Prop. 3.1. The only
modification we make is a bound on the first term of the three-part decomposition.

1

3
∑

i,j,k∈S
πiπjπk ≤

1

3
[p3∗ − 3p∗∑

i∈S
π2
i + 2∑

i

π2
i

Γ

N
].

Summing the bounds, we find

1

3
p3∗ + (

2Γ

3N
− 1)∑

i∈S
π2
i − p

2
∗ + p∗ − p∗ ∑

i∈Sc
π2
i ≥ (1 − α)p∗(1 −∑

l

π2
l )

We may reduce this further. Noting that 2Γ
3N − 1 ≤ −

Γ
3N ,∑π2

i ≥ p∗
1

ΓN we may upper
bound ( 2Γ3N − 1)∑i∈S π

2
i ≤ −

p∗
3N2 . Using this upper bound and dividing through by

p∗ we obtain
1

3
p2∗ − p∗ +∑

i∈S
π2
i −

1

3N2
≥ (1 − α)(1 −∑

l

π2
l ).

Solving the resulting quadratic equation gives the following expression for p∗:

3

2
−
1

2

¿
Á
ÁÀ9 − 12(∑

i∈S
π2
i −

1

3N2
− (1 − α)(1 −∑

l

π2
l ))

B.3 Proofs for Section 5.1.1

Proof of Theorem 5.1. In this proof, call a unit i strange if

∑
j,k∈[N]∖I

j≠k

1

2
(I{i ≻ j} + I{i ≻ k}) ≥ (1 − α)(N − 1)(N − 2).

Let S be the set of strange points and s ∶= S . Summing this inequality over all
strange points, we find

2(1 − α)(N − 1)(N − 2)s ≤∑
i∈S
∑

j,k∈[N]
I{i ≻ j} + I{i ≻ k} .
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Again, we will assume all indices in the summations are distinct, and omit this
from notation. Let us split this sum into three cases. The first case sums over
i, j, k ∈ S ; the second is twice the summation over i, j ∈ S, k ∈ Sc, and the third case
sums over i ∈ S, j, k ∈ Sc.

The first sum is the quantity∑i,j,k∈S(I{i ≻ j}+ I{i ≻ k}). By swapping the nam-
ing of the indices i, j and i, k, observe that the first sum is equal to

1

3
∑

i,j,k∈S
(I{i ≻ j} + I{i ≻ k} + I{j ≻ i} + I{j ≻ k} + I{k ≻ j} + I{k ≻ i}).

The summand is bounded above by 3. We may thus bound the first sum above by
s3. The second sum is treated similarly. Swapping the naming of the indices i, j,
the second sum can be rewritten

1

2
∑
i,j∈S
∑
k∈Sc
(I{i ≻ j} + I{i ≻ k} + I{j ≻ i} + I{j ≻ k}).

The sum of the indicators on the inside is bounded above by 3, so the second
sum can be bounded by 3s(s − 1)(N − s). Finally, for the third sum, there is
no gain in playing tricks with swapping indices. We will use the naive bound
2s(N − s)(N − s − 1).

Combining these bounds yields the following inequality on s:

2(1 − α)(N − 1)(N − 2)s ≤ s(s − 1)(s − 2) + 3s(s − 1)(N − s) + 2s(N − s)(N − s − 1),

which reduces to 2(1 − α)(N − 1)(N − 2) ≤ 2N2 − 5N − (N − 2)s + 2. Thus

(N − 2)s ≤ 2α(N − 1)(N − 2) − 2(N2 − 3N + 2) + 2N2 − 5N + 2

(N − 2)s ≤ 2α(N − 1)(N − 2) +N − 2.

Thus
s ≤ 2α(N − 1) + 1,

and so s/N ≤ 2α + 1−2α
N .

B.4 Proofs for Section 5.1.2

Proof of Theorem 5.2. Throughout the proof, define the quantity Q ∶= r(N−1r
)(1 − α).

Define a unit i0 to be strange if Q ≤ ∑{i1,...,ir}⊂[N]∑
r
j=1 I{i0 > ij} , where the notation
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I{i0 > ir} is shorthand for the indicator I{R(i1,...,ir);i0 > R(i1,...,ir);ij} that the residual
of i0 is greater than that of ij . Let S denote the set of all strange units and s ∶= ∣S ∣.
Summing over all i0 ∈ S ,

Qs ≤ ∑
i0∈S

∑
{i1,...,ir}
⊆[N]∖i0

r

∑
j=1

I{i0 > ij} .

By considering the number of indices t in the tuple {i1, . . . , ir} which are in S , let
us break up the right hand side of the sum into

r

∑
t=0
∑
i0∈S

∑
{i1,...,it}
⊆S

∑
{it+1,...,ir}
⊆Sc

r

∑
j=1

I{i0 > ij} . (14)

Here we assumed without loss of generality that the first t indices are in S , because
the summand is invariant to permutations in i1, . . . , ir. Introducing ordering of
the labels, splitting the summand, we find that Eq. (14) equals a sum over t of the
quantities

1

t!(r − t)!
∑

(i0,i1,...,it)
⊆S

∑
(it+1,...,ir)
⊆Sc

⎛

⎝

(I)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
t

∑
j=1

I{i0 > ij}+

(II)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

r

∑
j′=t+1

I{i0 > ij′}
⎞

⎠

Fixing t, we apply symmetry to improve on the naive upper bound for Eq. (14).
Let Πt denote the subgroup of permutations whose elements permute the labels
of i0, . . . , it. We may then bound the quantity (I) as

1

(t + 1)!
∑

π∈Πt+1

t

∑
j=1

I{π(i0) > π(ij)}

=
1

(t + 1)!
∑

π∈Πt+1
rank(π(i0))

=
t!

(t + 1)!

t

∑
j=0

rank(ij) =
1

t + 1

t

∑
j=0

j =
t

2
.

We note that the notion of rank used above ranges from 0 to t.
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On the other hand, the sum over the quantity (II) can be bounded above naively
by (r − t). Combining these two bounds, we find that

Qs ≤
r

∑
t=0

1

t!(r − t)!

s!

(s − t − 1)!

(N − s)!

((N − s) − (r − t))!
(r −

t

2
)

=
r

∑
t=0

s(
s − 1

t
)(

N − s

r − t
)(r −

t

2
)

=
r

∑
t=0

sr(
s − 1

t
)(
(N − 1) − (s − 1)

r − t
) −

r

∑
t=1

s(s − 1)

2
(
s − 2

t − 1
)(

N − 1 − (s − 1)

(r − 1) − (t − 1)
)

=
r

∑
t=0

sr(
s − 1

t
)(
(N − 1) − (s − 1)

r − t
) −

r−1
∑
t′=0

s(s − 1)

2
(
s − 2

t′
)(

N − 1 − (s − 1)

(r − 1) − t′
)

Applying the Vandermonde Identity, the last line yields Q ≤ r(N−1r
) −

(s−1)
2
(
N−2
r−1 ).

Solving for s, we find

s ≤
2r(N−1r

)

(
N−2
r−1 )

−
2Q

(
N−2
r−1 )

+ 1

Plugging in the value of Q, we find that

s ≤
2r(N−1r

)

(
N−2
r−1 )

−
2r(N−1r

)(1 − α)

(
N−2
r−1 )

+ 1 = 2(N − 1)α + 1,

so that s
N ≤ 2α +

1−2α
N .

Proof of LRO Rank Threshold Procedure Guarantee, Theorem 5.2 . In this setting, let us
introduce the notation I(i0 ≻ i1, . . . , ir) to denote the event where the residual
∣Yi0 −µ−i0,...,ir(Xi0)∣ is greater than the all the other residuals ∣Yik −µ−i0,...,ir(Xik)∣, k =
1, . . . , r. Define a unit i0 to be strange if

Q ≤ ∑
i1,...,ir

I(i0 ≻ i1, . . . , ir), (15)

for the threshold Q ∶= 1
⌊αN⌋ [(

N
r+1) − (

N−⌊αN⌋
r+1 )]. Define S to be the set of strange

points and s ∶= ∣S ∣. Summing both sides of the equation (15), we obtain the bound

Qs ≤ ∑
i0∈S

∑
i1,...,ir

I{i0 ≻ i1, . . . , ir} .
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Much as before, let us consider the number of indices t in the tuple {t1, . . . , tr}
which are in S . This lets us write:

Qs ≤ ∑
i0∈S

r

∑
t=0

∑
{i1,...,it}
⊂S

∑
{it+1,...,ir}
⊂Sc

I{i0 ≻ i1, . . . , ir}

=
1

t!(r − t)!
∑
i0∈S

r

∑
t=0
∑

i1,...,it
⊂S

∑
it+1,...,ir
⊂Sc

I{i0 ≻ i1, . . . , ir} .

Swapping the naming of i0 with i1, i2, . . . , it we have the bound

∑
i1,...,it
⊂S

I{i0 ≻ i1, . . . , ir} = ∑
i1,...,it
⊂S

1

t + 1

t

∑
j=0

I{ij ≻ i1, . . . , ir} ≤ ∑
i1,...,it
⊂S

1

t + 1
.

Plugging this back into the bound on Qs, we find

Qs ≤
r

∑
t=0

1

t!

1

(r − t)!
(

s!

(s − t − 1)!

(N − s)!

(N − s − (r − t))!

1

t + 1
)

=
r

∑
t=0
(

s

t + 1
)(

N − s

r − t
)

= (
N

r + 1
) − (

N − s

r + 1
)

where the last line follows by the Vandermonde identity and some reindexing. By
Lemma B.1, Q ≤ 1

s
[(

N
r+1) − (

N−s
r+1)] implies s ≤ ⌊αN⌋.

B.5 Proofs for Section 5.2

Proof of Proposition 5.2. we define a unit k to be strange if

∑
i≠j,i,j≠k

(πi + πj)I(k ≻ i, j) ≥ 2(N − 2)(1 − α)(1 − πk). (16)

Label the set of strange points as S and let s ∶= ∣S ∣. As before, define p∗ = ∑k∈S πk.
Multiply both sides of Equation (16) by πk, and sum over k ∈ S to obtain

2(N − 2)(1 − α)(p∗ −∑
k∈S

π2
k) ≤

(I)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
i,j,k∈S

πk(πi + πj)I(k ≻ i, j)+

(II)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2 ∑
i,k∈S
∑
j∈Sc

πk(πi + πj)I(k ≻ i, j)

+

(III)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
k∈S
∑

i,j∈Sc
πk(πi + πj)I(k ≻ i, j) .
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For the first sum (I) in the right hand side, break the sum into two terms,∑i,j,k∈S πkπiI(k ≻
i, j) and ∑i,j,k∈S πkπjI(k ≻ i, j). For the first term, swap indices i, k and use the
bound I(k ≻ i, j) + I(i ≻ k, j) ≤ 1; this yields ∑i,j,k∈S πkπiI(k ≻ i, j) ≤ 1

2 ∑i,j,k∈S πkπi ≤
1
2(p

2
∗−∑k∈S π

2
k)s. A similar logic on the second term, swapping j, k, yields the same

upper bound of 1
2p

2
∗s. Thus (I) ≤ (p2∗ −∑k∈S π

2
k)s.

For the second sum (II), split into the two terms 2∑i,k∈S∑j∈Sc πkπiI(k ≻ i, j)
and 2∑i,k∈S∑j∈Sc πkπjI(k ≻ i, j). In the first term, swap the indices i, k; leave
the second term alone. Swapping i, k in the first term leads to the upper bound
∑i,k∈S∑j∈Sc πkπi ≤ (p2∗ − ∑k∈S π

2
k)(N − 1 − s). The naive upper bound on the sec-

ond term yields 2p∗(1 − p∗)s. Finally, the third sum (III) is bounded naively by
2p∗(1 − p∗)(N − 1 − s).

Combining all of these, we obtain

2(1 − α)(N − 2) [p∗ −∑
S
π2
k] ≤ [p

2
∗ −∑

k∈S
π2
k] (N − 1) + 2p∗(N − 1) − 2p

2
∗(N − 1),

which reduces to the quadratic inequality

(N − 1)p2∗ − [2α(N − 2) + 2]p∗ + [(2α − 1 +
1

N − 2
)(N − 2)]∑

k∈S
π2
k ≤ 0

dividing by (N − 1) and solving, we find that

p∗ ≤ α
N − 2

N − 1
+

1

N − 2
+

¿
Á
ÁÀ(α

N − 2

N − 1
+

1

N − 2
)2 + [(1 − 2α)

N − 1

N − 2
−

1

N − 1
]∑
k∈S

π2
k.

Proof of Proposition 5.3. In this setting, define a unit k to be strange if it satisfies

∑
i≠j,i,j≠k

(πi + πj)I(k ≻ i, j) ≥ 2(N − 1)(1 − α)(1 − πk). (17)

Imitating the proof of Proposition 5.2, the factors of (N − 1) cancel nicely and we
can arrive at the quadratic inequality

p2∗ − 2αp∗ − (1 − 2α)∑
k∈S

π2
k ≤ 0,

which is easily solved to yield the desired bound on p∗.
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B.6 Minor lemmas

Lemma B.1. The sequence

s↦ A(s) ∶=
1

s
[(

N

r + 1
) − (

N − s

r + 1
)]

is decreasing.

Proof. Observe the two following identities on binomial coefficients:

(
N − s

r + 1
) =

N−1−s
∑
k=r
(
k

r
)

s(
N − 1 − s

r
) ≤

N−1
∑

k′=N−s
(
k′

r
).

The first is true because of the hockeystick identity, and the second is by mono-
tonicity. Summing these inequalities, we find

(
N − s

r + 1
) + s(

N − 1 − s

r
) ≤

N−1
∑
k=r
(
k

r
) = (

N

r + 1
),

which is equivalent to

(
N − s

r + 1
) + s [(

N − s

r + 1
) − (

N − 1 − s

r + 1
)] ≤ (s + 1)(

N

r + 1
) − s(

N

r + 1
).

Rearranging, A(s) ≥ A(s + 1).
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